ERP117337 Track Settings
 
Whole genome DNA methylation analysis of sperm DNA from normozoospermic and oligoasthenoteratozoospermic men [P4_NC002_SP_tWGBS_1, P4_NC004_SP_tWGBS_1, P4_NC005_SP_tWGBS_1, P4_NC007_SP_tWGBS_1, P4_NC008_SP_tWGBS_1, P4_OAT001_SP_tWGBS_1, P4_OAT002_SP_tWGBS_1, P4_OAT003_SP_tWGBS_1, P4_OAT005_SP_tWGBS_1, P4_OAT007_SP_tWGBS_1, P4_OAT015_SP_tWGBS_1, P4_OAT017_SP_tWGBS_1, P4_OAT018_SP_tWGBS_1, P4_OAT019_SP_tWGBS_1, P4_OAT020_SP_tWGBS_1, P4_OAT021_SP_tWGBS_1]   (Human methylome studies)

This track is part of a parent called 'Human methylome studies'. To show other tracks of this parent, go to the Human methylome studies configuration page.

Maximum display mode:       Reset to defaults   

Select views (help):
CpG reads ▾       CpG methylation ▾       AMR       PMD       HMR      
Select subtracks by views and experiment:
 All views CpG reads  CpG methylation  AMR  PMD  HMR 
experiment
ERX3542695 
ERX3542696 
ERX3542697 
ERX3542698 
ERX3542699 
ERX3542700 
ERX3542701 
ERX3542702 
ERX3542703 
ERX3542704 
ERX3542705 
ERX3542706 
ERX3542707 
ERX3542708 
ERX3542709 
ERX3542710 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 ERX3542695  HMR  P4_NC002_SP_tWGBS_1 / ERX3542695 (HMR)   schema 
hide
 ERX3542695  CpG methylation  P4_NC002_SP_tWGBS_1 / ERX3542695 (CpG methylation)   schema 
hide
 ERX3542696  HMR  P4_NC005_SP_tWGBS_1 / ERX3542696 (HMR)   schema 
hide
 ERX3542696  CpG methylation  P4_NC005_SP_tWGBS_1 / ERX3542696 (CpG methylation)   schema 
hide
 ERX3542697  HMR  P4_NC008_SP_tWGBS_1 / ERX3542697 (HMR)   schema 
hide
 ERX3542697  CpG methylation  P4_NC008_SP_tWGBS_1 / ERX3542697 (CpG methylation)   schema 
hide
 ERX3542698  HMR  P4_OAT001_SP_tWGBS_1 / ERX3542698 (HMR)   schema 
hide
 ERX3542698  CpG methylation  P4_OAT001_SP_tWGBS_1 / ERX3542698 (CpG methylation)   schema 
hide
 ERX3542699  HMR  P4_OAT002_SP_tWGBS_1 / ERX3542699 (HMR)   schema 
hide
 ERX3542699  CpG methylation  P4_OAT002_SP_tWGBS_1 / ERX3542699 (CpG methylation)   schema 
hide
 ERX3542700  HMR  P4_OAT003_SP_tWGBS_1 / ERX3542700 (HMR)   schema 
hide
 ERX3542700  CpG methylation  P4_OAT003_SP_tWGBS_1 / ERX3542700 (CpG methylation)   schema 
hide
 ERX3542701  HMR  P4_OAT005_SP_tWGBS_1 / ERX3542701 (HMR)   schema 
hide
 ERX3542701  CpG methylation  P4_OAT005_SP_tWGBS_1 / ERX3542701 (CpG methylation)   schema 
hide
 ERX3542702  HMR  P4_OAT007_SP_tWGBS_1 / ERX3542702 (HMR)   schema 
hide
 ERX3542702  CpG methylation  P4_OAT007_SP_tWGBS_1 / ERX3542702 (CpG methylation)   schema 
hide
 ERX3542703  HMR  P4_NC004_SP_tWGBS_1 / ERX3542703 (HMR)   schema 
hide
 ERX3542703  CpG methylation  P4_NC004_SP_tWGBS_1 / ERX3542703 (CpG methylation)   schema 
hide
 ERX3542704  HMR  P4_NC007_SP_tWGBS_1 / ERX3542704 (HMR)   schema 
hide
 ERX3542704  CpG methylation  P4_NC007_SP_tWGBS_1 / ERX3542704 (CpG methylation)   schema 
hide
 ERX3542705  HMR  P4_OAT015_SP_tWGBS_1 / ERX3542705 (HMR)   schema 
hide
 ERX3542705  CpG methylation  P4_OAT015_SP_tWGBS_1 / ERX3542705 (CpG methylation)   schema 
hide
 ERX3542706  HMR  P4_OAT017_SP_tWGBS_1 / ERX3542706 (HMR)   schema 
hide
 ERX3542706  CpG methylation  P4_OAT017_SP_tWGBS_1 / ERX3542706 (CpG methylation)   schema 
hide
 ERX3542707  HMR  P4_OAT018_SP_tWGBS_1 / ERX3542707 (HMR)   schema 
hide
 ERX3542707  CpG methylation  P4_OAT018_SP_tWGBS_1 / ERX3542707 (CpG methylation)   schema 
hide
 ERX3542708  HMR  P4_OAT019_SP_tWGBS_1 / ERX3542708 (HMR)   schema 
hide
 ERX3542708  CpG methylation  P4_OAT019_SP_tWGBS_1 / ERX3542708 (CpG methylation)   schema 
hide
 ERX3542709  HMR  P4_OAT020_SP_tWGBS_1 / ERX3542709 (HMR)   schema 
hide
 ERX3542709  CpG methylation  P4_OAT020_SP_tWGBS_1 / ERX3542709 (CpG methylation)   schema 
hide
 ERX3542710  HMR  P4_OAT021_SP_tWGBS_1 / ERX3542710 (HMR)   schema 
hide
 ERX3542710  CpG methylation  P4_OAT021_SP_tWGBS_1 / ERX3542710 (CpG methylation)   schema 
    

Study title: Whole genome DNA methylation analysis of sperm DNA from normozoospermic and oligoasthenoteratozoospermic men
SRA: ERP117337
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
ERX3542695 P4_NC002_SP_tWGBS_1 0.708 11.1 81448 1997.7 29821 3519.9 2329 55752.2 0.996 Illumina HiSeq 4000 paired end sequencing
ERX3542696 P4_NC005_SP_tWGBS_1 0.709 9.6 84983 2113.1 15368 5405.3 2661 62782.5 0.996 Illumina HiSeq 4000 paired end sequencing
ERX3542697 P4_NC008_SP_tWGBS_1 0.728 9.9 82542 2007.8 14919 5491.4 2268 60997.8 0.996 Illumina HiSeq 4000 paired end sequencing
ERX3542698 P4_OAT001_SP_tWGBS_1 0.732 9.7 37483 1216.6 51463 2886.8 1710 28270.5 0.996 Illumina HiSeq 4000 paired end sequencing
ERX3542699 P4_OAT002_SP_tWGBS_1 0.735 9.1 59506 2249.8 56516 2834.9 1830 62496.3 0.996 Illumina HiSeq 4000 paired end sequencing
ERX3542700 P4_OAT003_SP_tWGBS_1 0.743 9.5 50503 1878.3 69853 2736.8 1856 66738.6 0.996 Illumina HiSeq 4000 paired end sequencing
ERX3542701 P4_OAT005_SP_tWGBS_1 0.738 9.1 68749 2155.1 32732 3387.8 1952 60540.8 0.996 Illumina HiSeq 4000 paired end sequencing
ERX3542702 P4_OAT007_SP_tWGBS_1 0.727 9.1 72005 2147.2 34488 3279.5 2020 57541.2 0.996 Illumina HiSeq 4000 paired end sequencing
ERX3542703 P4_NC004_SP_tWGBS_1 0.725 8.4 74720 2011.2 9899 4348.4 2134 60539.9 0.997 Illumina HiSeq 4000 paired end sequencing
ERX3542704 P4_NC007_SP_tWGBS_1 0.729 8.5 75337 2066.9 9265 4564.6 2513 54884.5 0.997 Illumina HiSeq 4000 paired end sequencing
ERX3542705 P4_OAT015_SP_tWGBS_1 0.733 9.0 74454 1992.3 14122 5754.1 2678 51213.6 0.997 Illumina HiSeq 4000 paired end sequencing
ERX3542706 P4_OAT017_SP_tWGBS_1 0.724 8.8 78830 2053.3 14879 5423.8 2240 54150.3 0.997 Illumina HiSeq 4000 paired end sequencing
ERX3542707 P4_OAT018_SP_tWGBS_1 0.750 9.2 71195 1941.6 12312 3882.2 2148 65704.3 0.997 Illumina HiSeq 4000 paired end sequencing
ERX3542708 P4_OAT019_SP_tWGBS_1 0.723 9.4 77286 2247.4 14100 5670.3 2427 65100.0 0.996 Illumina HiSeq 4000 paired end sequencing
ERX3542709 P4_OAT020_SP_tWGBS_1 0.728 9.2 75942 2081.0 14238 3554.6 2403 54941.6 0.997 Illumina HiSeq 4000 paired end sequencing
ERX3542710 P4_OAT021_SP_tWGBS_1 0.732 9.0 74112 1991.5 14495 5571.8 2331 50522.1 0.996 Illumina HiSeq 4000 paired end sequencing

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.