SRP049651 Track Settings
 
Large-scale epigenetic reprogramming is punctuated late during the evolution of pancreatic cancer progression [BS-Seq] [Liver Metastasis, Lung Metastasis, Normal Pancreas, Patient A38, Peritoneal Metastasis, Primary Tumor]   (Human methylome studies)

This track is part of a parent called 'Human methylome studies'. To show other tracks of this parent, go to the Human methylome studies configuration page.

Maximum display mode:       Reset to defaults   

Select views (help):
CpG reads ▾       CpG methylation ▾       AMR       PMD       HMR      
Select subtracks by views and experiment:
 All views CpG reads  CpG methylation  AMR  PMD  HMR 
experiment
SRX1723237 
SRX1723238 
SRX1723239 
SRX1723240 
SRX1723241 
SRX1723242 
SRX1723243 
SRX1723244 
SRX2193417 
SRX2193418 
SRX2193419 
SRX2193420 
SRX2193421 
SRX2193422 
SRX2193423 
SRX756844 
SRX756845 
SRX756846 
SRX756847 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX1723237  CpG methylation  Liver Metastasis / SRX1723237 (CpG methylation)   schema 
hide
 SRX2193417  HMR  Primary Tumor / SRX2193417 (HMR)   schema 
hide
 SRX1723238  CpG methylation  Liver Metastasis / SRX1723238 (CpG methylation)   schema 
hide
 SRX2193418  HMR  Peritoneal Metastasis / SRX2193418 (HMR)   schema 
hide
 SRX2193419  HMR  Normal Pancreas / SRX2193419 (HMR)   schema 
hide
 SRX1723239  CpG methylation  Primary Tumor / SRX1723239 (CpG methylation)   schema 
hide
 SRX1723240  CpG methylation  Primary Tumor / SRX1723240 (CpG methylation)   schema 
hide
 SRX2193420  HMR  Primary Tumor / SRX2193420 (HMR)   schema 
hide
 SRX756846  HMR  Patient A38 / SRX756846 (HMR)   schema 
hide
 SRX1723241  CpG methylation  Primary Tumor / SRX1723241 (CpG methylation)   schema 
hide
 SRX756847  HMR  Patient A38 / SRX756847 (HMR)   schema 
hide
 SRX1723242  CpG methylation  Primary Tumor / SRX1723242 (CpG methylation)   schema 
hide
 SRX1723243  CpG methylation  Lung Metastasis / SRX1723243 (CpG methylation)   schema 
hide
 SRX1723244  CpG methylation  Lung Metastasis / SRX1723244 (CpG methylation)   schema 
hide
 SRX2193417  CpG methylation  Primary Tumor / SRX2193417 (CpG methylation)   schema 
hide
 SRX2193418  CpG methylation  Peritoneal Metastasis / SRX2193418 (CpG methylation)   schema 
hide
 SRX2193419  CpG methylation  Normal Pancreas / SRX2193419 (CpG methylation)   schema 
hide
 SRX2193420  CpG methylation  Primary Tumor / SRX2193420 (CpG methylation)   schema 
hide
 SRX2193421  CpG methylation  Primary Tumor / SRX2193421 (CpG methylation)   schema 
hide
 SRX2193422  CpG methylation  Liver Metastasis / SRX2193422 (CpG methylation)   schema 
hide
 SRX2193423  CpG methylation  Liver Metastasis / SRX2193423 (CpG methylation)   schema 
hide
 SRX756844  CpG methylation  Patient A38 / SRX756844 (CpG methylation)   schema 
hide
 SRX756845  CpG methylation  Patient A38 / SRX756845 (CpG methylation)   schema 
hide
 SRX756846  CpG methylation  Patient A38 / SRX756846 (CpG methylation)   schema 
hide
 SRX756847  CpG methylation  Patient A38 / SRX756847 (CpG methylation)   schema 
    

Study title: Large-scale epigenetic reprogramming is punctuated late during the evolution of pancreatic cancer progression [BS-Seq]
SRA: SRP049651
GEO: GSE63123
Pubmed: 28092686

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX1723237 Liver Metastasis 0.649 13.3 68177 7220.5 339 992.6 2539 338084.1 0.996 GSM2131360: 38-Lv_rep1 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX1723238 Liver Metastasis 0.653 15.2 73337 6659.6 455 993.8 2606 334405.7 0.995 GSM2131361: 38-Lv_rep2 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX1723239 Primary Tumor 0.716 12.2 69778 6732.8 263 1115.0 3029 219873.4 0.996 GSM2131362: A13-Pr1_rep1 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX1723240 Primary Tumor 0.719 11.0 67918 6911.3 225 1150.0 2998 221474.2 0.996 GSM2131363: A13-Pr1_rep2 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX1723241 Primary Tumor 0.716 13.3 72392 4805.1 382 1085.8 3276 177809.6 0.995 GSM2131364: A13-Pr2_rep1 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX1723242 Primary Tumor 0.731 13.1 69556 5154.4 190 1096.1 3242 180288.3 0.995 GSM2131365: A13-Pr2_rep2 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX1723243 Lung Metastasis 0.709 12.6 67026 7372.7 166 1106.0 3120 264727.3 0.995 GSM2131366: A13-Lg_rep1 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX1723244 Lung Metastasis 0.708 12.9 66353 7387.0 135 1173.5 3082 268998.8 0.996 GSM2131367: A13-Lg_rep2 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2193417 Primary Tumor 0.728 8.3 37949 1190.4 766 1213.8 1022 25385.2 0.995 GSM2330155: A124PrF [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2193418 Peritoneal Metastasis 0.719 9.1 38817 1257.1 244 1003.1 2146 15349.4 0.996 GSM2330156: A124Per [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2193419 Normal Pancreas 0.658 7.9 33647 1332.6 106 1015.4 1177 23120.3 0.995 GSM2330157: A124Normal [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2193420 Primary Tumor 0.723 8.0 33100 1315.3 102 1015.9 1471 18005.0 0.996 GSM2330158: A125PrF [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2193421 Primary Tumor 0.498 5.8 20229 28127.9 76 976.8 1590 864381.7 0.996 GSM2330159: A125PrS [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2193422 Liver Metastasis 0.551 6.2 33461 19392.0 78 950.1 1287 1038157.7 0.996 GSM2330160: A125Lv1 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2193423 Liver Metastasis 0.579 5.6 46321 11323.2 108 878.7 1172 1095165.3 0.996 GSM2330161: A125Lv2 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX756844 Patient A38 0.703 5.9 57386 5872.9 63 1098.8 1598 657914.6 0.996 GSM1541788: 38-Lg_rep1 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX756845 Patient A38 0.699 7.0 59747 5822.6 116 1062.2 1776 586562.0 0.996 GSM1541789: 38-Lg_rep2 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX756846 Patient A38 0.738 7.0 58529 3040.9 167 993.4 1446 549444.2 0.996 GSM1541790: 38-Per_rep1 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX756847 Patient A38 0.742 6.8 59521 3060.2 137 985.0 1435 554602.3 0.997 GSM1541791: 38-Per_rep2 [BS-Seq]; Homo sapiens; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.