SRP224808 Track Settings
 
Whole genome bisulfite sequencing of human spermatozoa reveals differentially methylated patterns from type 2 diabetic patients [Semen]   (Human methylome studies)

This track is part of a parent called 'Human methylome studies'. To show other tracks of this parent, go to the Human methylome studies configuration page.

Maximum display mode:       Reset to defaults   

Select views (help):
CpG reads ▾       CpG methylation ▾       AMR       PMD       HMR      
Select subtracks by views and experiment:
 All views CpG reads  CpG methylation  AMR  PMD  HMR 
experiment
SRX6965689 
SRX6965690 
SRX6965691 
SRX6965692 
SRX6965693 
SRX6965694 
SRX6965695 
SRX6965696 
SRX6965697 
SRX6965698 
SRX6965699 
SRX6965700 
SRX6965701 
SRX6965702 
SRX6965703 
SRX6965704 
SRX6965705 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX6965689  CpG methylation  Semen / SRX6965689 (CpG methylation)   schema 
hide
 SRX6965689  HMR  Semen / SRX6965689 (HMR)   schema 
hide
 SRX6965690  CpG methylation  Semen / SRX6965690 (CpG methylation)   schema 
hide
 SRX6965690  HMR  Semen / SRX6965690 (HMR)   schema 
hide
 SRX6965691  CpG methylation  Semen / SRX6965691 (CpG methylation)   schema 
hide
 SRX6965691  HMR  Semen / SRX6965691 (HMR)   schema 
hide
 SRX6965692  CpG methylation  Semen / SRX6965692 (CpG methylation)   schema 
hide
 SRX6965692  HMR  Semen / SRX6965692 (HMR)   schema 
hide
 SRX6965693  CpG methylation  Semen / SRX6965693 (CpG methylation)   schema 
hide
 SRX6965693  HMR  Semen / SRX6965693 (HMR)   schema 
hide
 SRX6965694  CpG methylation  Semen / SRX6965694 (CpG methylation)   schema 
hide
 SRX6965694  HMR  Semen / SRX6965694 (HMR)   schema 
hide
 SRX6965695  CpG methylation  Semen / SRX6965695 (CpG methylation)   schema 
hide
 SRX6965695  HMR  Semen / SRX6965695 (HMR)   schema 
hide
 SRX6965696  CpG methylation  Semen / SRX6965696 (CpG methylation)   schema 
hide
 SRX6965696  HMR  Semen / SRX6965696 (HMR)   schema 
hide
 SRX6965697  CpG methylation  Semen / SRX6965697 (CpG methylation)   schema 
hide
 SRX6965697  HMR  Semen / SRX6965697 (HMR)   schema 
hide
 SRX6965698  CpG methylation  Semen / SRX6965698 (CpG methylation)   schema 
hide
 SRX6965698  HMR  Semen / SRX6965698 (HMR)   schema 
hide
 SRX6965699  CpG methylation  Semen / SRX6965699 (CpG methylation)   schema 
hide
 SRX6965699  HMR  Semen / SRX6965699 (HMR)   schema 
hide
 SRX6965700  CpG methylation  Semen / SRX6965700 (CpG methylation)   schema 
hide
 SRX6965700  HMR  Semen / SRX6965700 (HMR)   schema 
hide
 SRX6965701  CpG methylation  Semen / SRX6965701 (CpG methylation)   schema 
hide
 SRX6965701  HMR  Semen / SRX6965701 (HMR)   schema 
hide
 SRX6965702  CpG methylation  Semen / SRX6965702 (CpG methylation)   schema 
hide
 SRX6965702  HMR  Semen / SRX6965702 (HMR)   schema 
hide
 SRX6965703  HMR  Semen / SRX6965703 (HMR)   schema 
hide
 SRX6965703  CpG methylation  Semen / SRX6965703 (CpG methylation)   schema 
hide
 SRX6965704  CpG methylation  Semen / SRX6965704 (CpG methylation)   schema 
hide
 SRX6965704  HMR  Semen / SRX6965704 (HMR)   schema 
hide
 SRX6965705  CpG methylation  Semen / SRX6965705 (CpG methylation)   schema 
hide
 SRX6965705  HMR  Semen / SRX6965705 (HMR)   schema 
    

Study title: Whole genome bisulfite sequencing of human spermatozoa reveals differentially methylated patterns from type 2 diabetic patients
SRA: SRP224808
GEO: GSE138598
Pubmed: 31869513

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX6965689 Semen 0.734 19.9 92559 2600.3 16244 923.5 4570 39262.1 0.989 GSM4114084: T2DM_1_Semen_WGBS; Homo sapiens; Bisulfite-Seq
SRX6965690 Semen 0.736 15.5 91817 2433.0 6197 898.6 5887 27992.5 0.979 GSM4114085: T2DM_2_Semen_WGBS; Homo sapiens; Bisulfite-Seq
SRX6965691 Semen 0.757 16.0 92994 2371.4 6135 879.1 5355 30322.9 0.980 GSM4114086: T2DM_3_Semen_WGBS; Homo sapiens; Bisulfite-Seq
SRX6965692 Semen 0.742 15.0 86666 2327.5 7607 942.6 5918 26580.8 0.977 GSM4114087: T2DM_4_Semen_WGBS; Homo sapiens; Bisulfite-Seq
SRX6965693 Semen 0.758 15.4 87959 2437.3 9560 968.4 6655 26214.2 0.983 GSM4114088: T2DM_5_Semen_WGBS; Homo sapiens; Bisulfite-Seq
SRX6965694 Semen 0.729 16.1 89561 2393.6 8790 968.9 5393 30749.4 0.981 GSM4114089: T2DM_6_Semen_WGBS; Homo sapiens; Bisulfite-Seq
SRX6965695 Semen 0.781 17.2 89139 2499.8 5790 885.2 6205 26749.3 0.986 GSM4114090: T2DM_7_Semen_WGBS; Homo sapiens; Bisulfite-Seq
SRX6965696 Semen 0.750 17.8 84883 2284.2 10658 982.1 5758 25733.7 0.980 GSM4114091: T2DM_8_Semen_WGBS; Homo sapiens; Bisulfite-Seq
SRX6965697 Semen 0.750 20.0 92511 2505.3 10238 960.5 6282 28046.2 0.985 GSM4114092: Control_1_Semen_WGBS; Homo sapiens; Bisulfite-Seq
SRX6965698 Semen 0.755 18.3 89429 2371.1 7823 918.9 6064 26871.9 0.982 GSM4114093: Control_2_Semen_WGBS; Homo sapiens; Bisulfite-Seq
SRX6965699 Semen 0.755 19.2 87798 2428.5 14138 931.1 5149 29958.9 0.986 GSM4114094: Control_3_Semen_WGBS; Homo sapiens; Bisulfite-Seq
SRX6965700 Semen 0.756 19.9 85272 2579.5 9166 932.7 6939 24952.2 0.990 GSM4114095: Control_4_Semen_WGBS; Homo sapiens; Bisulfite-Seq
SRX6965701 Semen 0.737 16.2 85747 2474.2 7749 899.2 5987 27409.7 0.982 GSM4114096: Control_5_Semen_WGBS; Homo sapiens; Bisulfite-Seq
SRX6965702 Semen 0.724 19.5 86979 2552.2 12045 928.7 5875 30345.1 0.980 GSM4114097: Control_6_Semen_WGBS; Homo sapiens; Bisulfite-Seq
SRX6965703 Semen 0.753 14.4 88105 2352.4 7169 918.6 5641 28282.3 0.983 GSM4114098: Control_7_Semen_WGBS; Homo sapiens; Bisulfite-Seq
SRX6965704 Semen 0.757 17.8 83125 2472.5 8759 931.3 5604 28563.2 0.981 GSM4114099: Control_8_Semen_WGBS; Homo sapiens; Bisulfite-Seq
SRX6965705 Semen 0.733 13.9 86526 2409.0 6176 916.6 5351 30569.6 0.984 GSM4114100: Control_9_Semen_WGBS; Homo sapiens; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.