SRP321876 Track Settings
 
Genetic variation at mouse and human ribosomal DNA influences associated epigenetic states [Blood, Kidney]   (Human methylome studies)

This track is part of a parent called 'Human methylome studies'. To show other tracks of this parent, go to the Human methylome studies configuration page.

Maximum display mode:       Reset to defaults   

Select views (help):
CpG reads ▾       CpG methylation ▾       AMR       PMD       HMR      
Select subtracks by views and experiment:
 All views CpG reads  CpG methylation  AMR  PMD  HMR 
experiment
SRX11357456 
SRX11357457 
SRX11357458 
SRX11357460 
SRX11357461 
SRX11357462 
SRX11357463 
SRX11357464 
SRX11357465 
SRX11357466 
SRX11357467 
SRX11357468 
SRX11357469 
SRX11357470 
SRX11357472 
SRX11357473 
SRX11357474 
SRX11357475 
SRX11357476 
SRX11357477 
SRX11357478 
SRX11357479 
SRX13680198 
SRX13680199 
SRX13680200 
SRX13680201 
SRX13680202 
SRX13680203 
SRX13680204 
SRX13680205 
SRX13680206 
SRX13680207 
SRX13680208 
SRX13680209 
SRX13680210 
SRX13680211 
SRX13680212 
SRX13680213 
SRX13680214 
SRX13680215 
SRX13680216 
SRX13680217 
SRX13680218 
SRX13680219 
SRX13680220 
SRX13680221 
experiment
 All views CpG reads  CpG methylation  AMR  PMD  HMR 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX11357456  CpG methylation  Blood / SRX11357456 (CpG methylation)   schema 
hide
 SRX11357456  HMR  Blood / SRX11357456 (HMR)   schema 
hide
 SRX11357457  HMR  Blood / SRX11357457 (HMR)   schema 
hide
 SRX11357457  CpG methylation  Blood / SRX11357457 (CpG methylation)   schema 
hide
 SRX11357458  CpG methylation  Blood / SRX11357458 (CpG methylation)   schema 
hide
 SRX11357476  HMR  Blood / SRX11357476 (HMR)   schema 
hide
 SRX11357479  HMR  Blood / SRX11357479 (HMR)   schema 
hide
 SRX11357460  CpG methylation  Blood / SRX11357460 (CpG methylation)   schema 
hide
 SRX11357461  CpG methylation  Blood / SRX11357461 (CpG methylation)   schema 
hide
 SRX13680199  HMR  Blood / SRX13680199 (HMR)   schema 
hide
 SRX13680201  HMR  Blood / SRX13680201 (HMR)   schema 
hide
 SRX11357462  CpG methylation  Blood / SRX11357462 (CpG methylation)   schema 
hide
 SRX11357463  CpG methylation  Blood / SRX11357463 (CpG methylation)   schema 
hide
 SRX13680213  HMR  Blood / SRX13680213 (HMR)   schema 
hide
 SRX13680219  HMR  Blood / SRX13680219 (HMR)   schema 
hide
 SRX11357464  CpG methylation  Blood / SRX11357464 (CpG methylation)   schema 
hide
 SRX13680220  HMR  Blood / SRX13680220 (HMR)   schema 
hide
 SRX11357465  CpG methylation  Blood / SRX11357465 (CpG methylation)   schema 
hide
 SRX11357466  CpG methylation  Blood / SRX11357466 (CpG methylation)   schema 
hide
 SRX11357467  CpG methylation  Blood / SRX11357467 (CpG methylation)   schema 
hide
 SRX11357468  CpG methylation  Blood / SRX11357468 (CpG methylation)   schema 
hide
 SRX11357469  CpG methylation  Blood / SRX11357469 (CpG methylation)   schema 
hide
 SRX11357470  CpG methylation  Blood / SRX11357470 (CpG methylation)   schema 
hide
 SRX11357472  CpG methylation  Blood / SRX11357472 (CpG methylation)   schema 
hide
 SRX11357473  CpG methylation  Blood / SRX11357473 (CpG methylation)   schema 
hide
 SRX11357474  CpG methylation  Blood / SRX11357474 (CpG methylation)   schema 
hide
 SRX11357475  CpG methylation  Blood / SRX11357475 (CpG methylation)   schema 
hide
 SRX11357476  CpG methylation  Blood / SRX11357476 (CpG methylation)   schema 
hide
 SRX11357477  CpG methylation  Blood / SRX11357477 (CpG methylation)   schema 
hide
 SRX11357478  CpG methylation  Blood / SRX11357478 (CpG methylation)   schema 
hide
 SRX11357479  CpG methylation  Blood / SRX11357479 (CpG methylation)   schema 
hide
 SRX13680198  CpG methylation  Blood / SRX13680198 (CpG methylation)   schema 
hide
 SRX13680199  CpG methylation  Blood / SRX13680199 (CpG methylation)   schema 
hide
 SRX13680200  CpG methylation  Blood / SRX13680200 (CpG methylation)   schema 
hide
 SRX13680201  CpG methylation  Blood / SRX13680201 (CpG methylation)   schema 
hide
 SRX13680202  CpG methylation  Blood / SRX13680202 (CpG methylation)   schema 
hide
 SRX13680203  CpG methylation  Blood / SRX13680203 (CpG methylation)   schema 
hide
 SRX13680204  CpG methylation  Blood / SRX13680204 (CpG methylation)   schema 
hide
 SRX13680205  CpG methylation  Blood / SRX13680205 (CpG methylation)   schema 
hide
 SRX13680206  CpG methylation  Blood / SRX13680206 (CpG methylation)   schema 
hide
 SRX13680207  CpG methylation  Blood / SRX13680207 (CpG methylation)   schema 
hide
 SRX13680208  CpG methylation  Blood / SRX13680208 (CpG methylation)   schema 
hide
 SRX13680209  CpG methylation  Blood / SRX13680209 (CpG methylation)   schema 
hide
 SRX13680210  CpG methylation  Blood / SRX13680210 (CpG methylation)   schema 
hide
 SRX13680211  CpG methylation  Blood / SRX13680211 (CpG methylation)   schema 
hide
 SRX13680212  CpG methylation  Blood / SRX13680212 (CpG methylation)   schema 
hide
 SRX13680213  CpG methylation  Blood / SRX13680213 (CpG methylation)   schema 
hide
 SRX13680214  CpG methylation  Blood / SRX13680214 (CpG methylation)   schema 
hide
 SRX13680215  CpG methylation  Blood / SRX13680215 (CpG methylation)   schema 
hide
 SRX13680216  CpG methylation  Blood / SRX13680216 (CpG methylation)   schema 
hide
 SRX13680217  CpG methylation  Blood / SRX13680217 (CpG methylation)   schema 
hide
 SRX13680218  CpG methylation  Blood / SRX13680218 (CpG methylation)   schema 
hide
 SRX13680219  CpG methylation  Blood / SRX13680219 (CpG methylation)   schema 
hide
 SRX13680220  CpG methylation  Blood / SRX13680220 (CpG methylation)   schema 
hide
 SRX13680221  CpG methylation  Blood / SRX13680221 (CpG methylation)   schema 
    

Study title: Genetic variation at mouse and human ribosomal DNA influences associated epigenetic states
SRA: SRP321876
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX11357456 Blood 0.645 7.2 39139 3390.1 5720 6540.9 450 2486240.5 0.973 WGBS of homo sapiens : male LCL
SRX11357457 Blood 0.668 11.2 45206 3232.9 14296 5857.2 727 1805473.2 0.968 WGBS of homo sapiens : male LCL
SRX11357458 Blood 0.608 10.1 47884 8508.5 10872 7089.0 1044 1448646.7 0.981 WGBS of homo sapiens : male LCL
SRX11357460 Blood 0.621 10.6 49177 9138.3 10860 7150.5 938 1529581.1 0.979 WGBS of homo sapiens : male LCL
SRX11357461 Blood 0.624 6.7 47171 9048.2 3065 20811.6 973 1523936.8 0.983 WGBS of homo sapiens : male LCL
SRX11357462 Blood 0.628 9.2 49521 9033.1 9333 4774.1 1175 1334531.3 0.960 WGBS of homo sapiens : male LCL
SRX11357463 Blood 0.642 10.8 42628 4201.3 13696 5860.8 582 2128219.9 0.982 WGBS of homo sapiens : male LCL
SRX11357464 Blood 0.603 9.8 46046 8773.5 12284 3955.3 1061 1460501.7 0.977 WGBS of homo sapiens : male LCL
SRX11357465 Blood 0.594 10.2 45597 8716.1 13688 3741.1 1026 1484175.3 0.983 WGBS of homo sapiens : male LCL
SRX11357466 Blood 0.539 11.9 33291 15698.6 26929 4097.5 1125 1383461.4 0.985 WGBS of homo sapiens : male LCL
SRX11357467 Blood 0.611 6.5 39921 7064.2 3636 9380.5 963 1575321.4 0.975 WGBS of homo sapiens : male LCL
SRX11357468 Blood 0.620 7.9 40225 4875.0 11669 3979.9 544 2198197.1 0.966 WGBS of homo sapiens : male LCL
SRX11357469 Blood 0.546 10.5 31140 16237.4 20049 4765.9 1345 1246275.9 0.980 WGBS of homo sapiens : male LCL
SRX11357470 Blood 0.577 9.4 39197 12671.3 12412 6466.4 1136 1378067.6 0.979 WGBS of homo sapiens : male LCL
SRX11357472 Blood 0.615 7.7 41211 6013.4 6104 6327.7 707 1925110.6 0.969 WGBS of homo sapiens : male LCL
SRX11357473 Blood 0.636 10.2 44398 4259.4 11062 4244.3 858 1694866.9 0.977 WGBS of homo sapiens : male LCL
SRX11357474 Blood 0.654 12.3 49129 4785.1 18233 5063.4 742 1762122.7 0.968 WGBS of homo sapiens : male LCL
SRX11357475 Blood 0.656 6.0 39034 4364.3 1957 16116.6 1026 1521334.2 0.976 WGBS of homo sapiens : male LCL
SRX11357476 Blood 0.624 8.4 38532 3630.4 8804 4730.3 439 2529265.9 0.983 WGBS of homo sapiens : male LCL
SRX11357477 Blood 0.593 10.6 41756 13128.2 18523 5001.0 1130 1330345.4 0.958 WGBS of homo sapiens : male LCL
SRX11357478 Blood 0.650 10.1 48685 5061.9 9656 7800.2 925 1605221.4 0.977 WGBS of homo sapiens : male LCL
SRX11357479 Blood 0.667 9.1 42378 1723.2 7303 5538.7 3305 62099.9 0.978 WGBS of homo sapiens : male LCL
SRX13680198 Blood 0.559 8.1 30315 16904.3 7229 5649.6 1345 1223314.9 0.976 WGBS of homo sapiens : female LCL
SRX13680199 Blood 0.665 10.7 41757 3353.3 12269 4032.5 524 2222980.4 0.983 WGBS of homo sapiens : female LCL
SRX13680200 Blood 0.433 10.4 29461 30283.7 31368 2765.0 2802 659849.2 0.978 WGBS of homo sapiens : female LCL
SRX13680201 Blood 0.685 11.3 43572 1780.0 12299 3940.0 820 1599068.2 0.982 WGBS of homo sapiens : female LCL
SRX13680202 Blood 0.584 8.3 40730 8732.6 8887 4819.4 733 1898329.8 0.976 WGBS of homo sapiens : female LCL
SRX13680203 Blood 0.622 11.7 50392 8622.2 16636 3588.9 885 1626099.9 0.977 WGBS of homo sapiens : female LCL
SRX13680204 Blood 0.627 8.8 43168 5748.2 10788 4224.7 661 1999745.6 0.980 WGBS of homo sapiens : female LCL
SRX13680205 Blood 0.630 10.2 48999 6365.0 13406 3842.9 910 1627244.0 0.982 WGBS of homo sapiens : female LCL
SRX13680206 Blood 0.548 10.9 32239 18516.0 24466 3135.0 1352 1191145.6 0.981 WGBS of homo sapiens : female LCL
SRX13680207 Blood 0.579 6.8 33123 16258.9 3727 9439.8 1157 1373454.7 0.980 WGBS of homo sapiens : female LCL
SRX13680208 Blood 0.619 10.7 48211 6817.3 14399 3791.7 703 1850884.8 0.985 WGBS of homo sapiens : female LCL
SRX13680209 Blood 0.549 10.5 35994 15143.0 15655 3637.7 1114 1388166.5 0.985 WGBS of homo sapiens : female LCL
SRX13680210 Blood 0.586 10.7 41888 15206.4 18922 3637.6 1341 1193433.2 0.982 WGBS of homo sapiens : female LCL
SRX13680211 Blood 0.569 8.4 37309 13741.0 6535 10700.0 1131 1390593.6 0.985 WGBS of homo sapiens : female LCL
SRX13680212 Blood 0.601 11.5 48467 7805.0 15838 5514.1 784 1738664.2 0.986 WGBS of homo sapiens : female LCL
SRX13680213 Blood 0.675 10.7 41810 2070.9 12934 3833.9 608 2055773.4 0.982 WGBS of homo sapiens : female LCL
SRX13680214 Blood 0.592 9.7 41830 10942.9 17529 3362.5 962 1577460.0 0.981 WGBS of homo sapiens : female LCL
SRX13680215 Blood 0.487 10.0 19206 27658.9 18485 3508.2 1792 977812.2 0.984 WGBS of homo sapiens : female LCL
SRX13680216 Blood 0.591 11.2 45659 10943.8 16946 3635.3 924 1567398.0 0.983 WGBS of homo sapiens : female LCL
SRX13680217 Blood 0.581 8.7 38295 12997.5 10162 4594.2 1149 1415994.1 0.974 WGBS of homo sapiens : female LCL
SRX13680218 Blood 0.553 9.5 26006 17938.7 21263 3198.2 1258 1334174.4 0.971 WGBS of homo sapiens : female LCL
SRX13680219 Blood 0.672 8.3 39580 1774.0 9119 4727.7 582 2158525.1 0.968 WGBS of homo sapiens : female LCL
SRX13680220 Blood 0.656 11.2 40511 1858.3 13771 3709.4 594 2068544.9 0.984 WGBS of homo sapiens : female LCL
SRX13680221 Blood 0.535 11.2 30812 16373.7 25212 3019.2 1244 1316309.3 0.985 WGBS of homo sapiens : female LCL

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.