SRP510797 Track Settings
 
Homo sapiens Raw sequence reads [Clear Renal Carcinoma Cells Caki1, Kaiso-deficient Caki1]   (Human methylome studies)

This track is part of a parent called 'Human methylome studies'. To show other tracks of this parent, go to the Human methylome studies configuration page.

Maximum display mode:       Reset to defaults   

Select views (help):
CpG reads ▾       CpG methylation ▾       AMR       PMD      
Select subtracks by views and experiment:
 All views CpG reads  CpG methylation  AMR  PMD 
experiment
SRX25062933 
SRX25062934 
SRX25062935 
SRX25062936 
SRX25062937 
SRX25062938 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX25062933  CpG reads  Clear Renal Carcinoma Cells Caki1 / SRX25062933 (CpG reads)   schema 
hide
 SRX25062933  CpG methylation  Clear Renal Carcinoma Cells Caki1 / SRX25062933 (CpG methylation)   schema 
hide
 SRX25062933  AMR  Clear Renal Carcinoma Cells Caki1 / SRX25062933 (AMR)   schema 
hide
 SRX25062933  PMD  Clear Renal Carcinoma Cells Caki1 / SRX25062933 (PMD)   schema 
hide
 SRX25062934  AMR  Clear Renal Carcinoma Cells Caki1 / SRX25062934 (AMR)   schema 
hide
 SRX25062934  CpG reads  Clear Renal Carcinoma Cells Caki1 / SRX25062934 (CpG reads)   schema 
hide
 SRX25062934  CpG methylation  Clear Renal Carcinoma Cells Caki1 / SRX25062934 (CpG methylation)   schema 
hide
 SRX25062934  PMD  Clear Renal Carcinoma Cells Caki1 / SRX25062934 (PMD)   schema 
hide
 SRX25062935  CpG reads  Clear Renal Carcinoma Cells Caki1 / SRX25062935 (CpG reads)   schema 
hide
 SRX25062935  CpG methylation  Clear Renal Carcinoma Cells Caki1 / SRX25062935 (CpG methylation)   schema 
hide
 SRX25062935  AMR  Clear Renal Carcinoma Cells Caki1 / SRX25062935 (AMR)   schema 
hide
 SRX25062935  PMD  Clear Renal Carcinoma Cells Caki1 / SRX25062935 (PMD)   schema 
hide
 SRX25062936  CpG reads  Kaiso-deficient Caki1 / SRX25062936 (CpG reads)   schema 
hide
 SRX25062936  CpG methylation  Kaiso-deficient Caki1 / SRX25062936 (CpG methylation)   schema 
hide
 SRX25062936  AMR  Kaiso-deficient Caki1 / SRX25062936 (AMR)   schema 
hide
 SRX25062936  PMD  Kaiso-deficient Caki1 / SRX25062936 (PMD)   schema 
hide
 SRX25062937  CpG reads  Kaiso-deficient Caki1 / SRX25062937 (CpG reads)   schema 
hide
 SRX25062937  CpG methylation  Kaiso-deficient Caki1 / SRX25062937 (CpG methylation)   schema 
hide
 SRX25062937  AMR  Kaiso-deficient Caki1 / SRX25062937 (AMR)   schema 
hide
 SRX25062937  PMD  Kaiso-deficient Caki1 / SRX25062937 (PMD)   schema 
hide
 SRX25062938  CpG reads  Kaiso-deficient Caki1 / SRX25062938 (CpG reads)   schema 
hide
 SRX25062938  CpG methylation  Kaiso-deficient Caki1 / SRX25062938 (CpG methylation)   schema 
hide
 SRX25062938  AMR  Kaiso-deficient Caki1 / SRX25062938 (AMR)   schema 
hide
 SRX25062938  PMD  Kaiso-deficient Caki1 / SRX25062938 (PMD)   schema 
    

Study title: Homo sapiens Raw sequence reads
SRA: SRP510797
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX25062933 Clear Renal Carcinoma Cells Caki1 0.622 7.9 64226 11632.0 975 984.2 1803 547344.2 0.996 Caki1 WT rep1
SRX25062934 Clear Renal Carcinoma Cells Caki1 0.621 8.4 67000 11467.1 910 1000.2 1799 551730.6 0.997 Caki1 WT rep2
SRX25062935 Clear Renal Carcinoma Cells Caki1 0.621 11.6 73369 10659.7 1338 1025.3 2127 462258.7 0.997 Caki1 WT rep3
SRX25062936 Kaiso-deficient Caki1 0.629 12.0 83470 9517.4 1097 990.0 2647 380660.4 0.995 Caki1 Kaiso KO rep1
SRX25062937 Kaiso-deficient Caki1 0.629 9.2 74459 10645.4 603 997.5 1947 527723.4 0.994 Caki1 Kaiso KO rep2
SRX25062938 Kaiso-deficient Caki1 0.633 10.5 77623 10204.3 854 1006.0 2626 386389.5 0.965 Caki1 Kaiso KO rep3

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.