Affy EC Signal Track Settings
 
Affymetrix ENCODE Extension Transcription Signal   (Affy EC)

This track is part of a parent called 'Affy EC'. To show other tracks of this parent, go to the Affy EC configuration page.

Display mode:       Reset to defaults

Type of graph:
Track height: pixels (range: 10 to 100)
Data view scaling: Always include zero: 
Vertical viewing range: min:  max:   (range: 0 to 62385)
Transform function:Transform data points by: 
Windowing function: Smoothing window:  pixels
Negate values:
Draw y indicator lines:at y = 0.0:    at y =
Graph configuration help
All subtracks:
List subtracks: only selected/visible    all    ()  
dense
 EC1 Sgnl BrainC  Affy Ext Trans Signal (1-base window) (Brain Cerebellum)   schema 
dense
 EC51 Sgnl BrainC  Affy Ext Trans Signal (51-base window) (Brain Cerebellum)   schema 
dense
 EC1 Sgnl BrainF  Affy Ext Trans Signal (1-base window) (Brain Frontal Lobe)   schema 
dense
 EC51 Sgnl BrainF  Affy Ext Trans Signal (51-base window) (Brain Frontal Lobe)   schema 
dense
 EC1 Sgnl Hippoc  Affy Ext Trans Signal (1-base window) (Brain Hippocampus)   schema 
dense
 EC51 Sgnl Hippoc  Affy Ext Trans Signal (51-base window) (Brain Hippocampus)   schema 
dense
 EC1 Sgnl BrainH  Affy Ext Trans Signal (1-base window) (Brain Hypothalamus)   schema 
dense
 EC51 Sgnl BrainH  Affy Ext Trans Signal (51-base window) (Brain Hypothalamus)   schema 
dense
 EC1 Sgnl FetalK  Affy Ext Trans Signal (1-base window) (Fetal Kidney)   schema 
dense
 EC51 Sgnl FetalK  Affy Ext Trans Signal (51-base window) (Fetal Kidney)   schema 
dense
 EC1 Sgnl Spleen  Affy Ext Trans Signal (1-base window) (Fetal Spleen)   schema 
dense
 EC51 Sgnl Spleen  Affy Ext Trans Signal (51-base window) (Fetal Spleen)   schema 
dense
 EC1 Sgnl Placen  Affy Ext Trans Signal (1-base window) (Placenta)   schema 
dense
 EC51 Sgnl Placen  Affy Ext Trans Signal (51-base window) (Placenta)   schema 
dense
 EC1 Sgnl Testis  Affy Ext Trans Signal (1-base window) (Testis)   schema 
dense
 EC51 Sgnl Testis  Affy Ext Trans Signal (51-base window) (Testis)   schema 
dense
 EC1 Sgnl FetalT  Affy Ext Trans Signal (1-base window) (Fetal Testis)   schema 
dense
 EC51 Sgnl FetalT  Affy Ext Trans Signal (51-base window) (Fetal Testis)   schema 
dense
 EC1 Sgnl Prost  Affy Ext Trans Signal (1-base window) (Prostate)   schema 
dense
 EC51 Sgnl Prost  Affy Ext Trans Signal (51-base window) (Prostate)   schema 
dense
 EC1 Sgnl Ovary  Affy Ext Trans Signal (1-base window) (Ovary)   schema 
dense
 EC51 Sgnl Ovary  Affy Ext Trans Signal (51-base window) (Ovary)   schema 
dense
 EC1 Sgnl HeLa  Affy Ext Trans Signal (1-base window) (HeLa C1S3)   schema 
dense
 EC51 Sgnl HeLa  Affy Ext Trans Signal (51-base window) (HeLa C1S3)   schema 
dense
 EC1 Sgnl GM0699  Affy Ext Trans Signal (1-base window) (GM06990)   schema 
dense
 EC51 Sgnl GM0699  Affy Ext Trans Signal (51-base window) (GM06990)   schema 
dense
 EC1 Sgnl HepG2  Affy Ext Trans Signal (1-base window) (HepG2)   schema 
dense
 EC51 Sgnl HepG2  Affy Ext Trans Signal (51-base window) (HepG2)   schema 
dense
 EC1 Sgnl K562  Affy Ext Trans Signal (1-base window) (K562)   schema 
dense
 EC51 Sgnl K562  Affy Ext Trans Signal (51-base window) (K562)   schema 
dense
 EC1 Sgnl TertBJ  Affy Ext Trans Signal (1-base window) (Tert-BJ)   schema 
dense
 EC51 Sgnl TertBJ  Affy Ext Trans Signal (51-base window) (Tert-BJ)   schema 
    
Data coordinates converted via liftOver from: May 2004 (NCBI35/hg17)

Description

This track shows an estimate of RNA abundance (transcription) for chromosomes 21 and 22 for 5 cell lines and 11 tissues. The 5 cell lines used were: GM06990, HepG2, K562, HeLaS3 and Tert-BJ; the 11 tissues used were: cerebellum, brain frontal lobe, hippocampus, hypothalamus, fetal spleen, fetal kidney, fetal thymus, ovary, placenta, prostate and testis. Purified cytosolic polyA+ RNA from GM06990, HepG2 and Tert-BJ cell lines, as well as purified polyA+ RNA from whole cell extracts of the remaining cell lines and tissues, were hybridized to Affymetrix Chromosome 21_22_v2 oligonucleotide tiling arrays, which have 25-mer probes spaced on average every 17 bp (center-center of each 25mer) in the non-repetitive regions of human chromosomes 21 and 22. Composite signals are shown in separate subtracks for each cell and tissue types.

Data for all biological replicates can be downloaded from Affymetrix in wig, BED, and cel formats.

Display Conventions and Configuration

The subtracks within this composite annotation track may be configured in a variety of ways to highlight different aspects of the displayed data. The graphical configuration options for the subtracks are shown at the top of the track description page, followed by a list of subtracks. To show only selected subtracks, uncheck the boxes next to the tracks that you wish to hide. For more information about the graphical configuration options, click the Graph configuration help link.

Methods

The data from replicate arrays were quantile-normalized (Bolstad et al., 2003) and all arrays were scaled to a median array intensity of 330. Using two different approaches: i) no sliding window ii) sliding 51-bp window centered on each probe, an estimate of RNA abundance (signal) was computed by calculating the median of all pairwise average PM-MM values, where PM is a perfect match and MM is a mismatch. Both Kapranov et al. (2002) and Cawley et al. (2004) are good references for the experimental methods. The latter also describes the analytical methods.

Verification

Single biological replicates were generated and hybridized to duplicate arrays (two technical replicates). Transcribed regions were generated from the composite signal track by merging genomic positions to which probes are mapped. This merging was based on a 5% false positive rate cutoff in negative bacterial controls, a maximum gap (MaxGap) of 25 basepairs and minimum run (MinRun) of 25 basepairs (see the Affy TransFrags track for the merged regions).

Credits

These data were generated and analyzed by the collaboration of the following groups: the Tom Gingeras group at Affymetrix, Roderic Guigo group at Centre de Regulacio Genomica, Alexandre Reymond group at the University of Lausanne and Stylianos Antonarakis group at University of Geneva.

References

Please see the Affymetrix Transcriptome site for a project overview and additional references to Affymetrix tiling array publications.

Bolstad, B. M., Irizarry, R. A., Astrand, M., and Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2), 185-193 (2003).

Cawley, S., Bekiranov, S., Ng, H. H., Kapranov, P., Sekinger, E. A., Kampa, D., Piccolboni, A., Sementchenko, V., Cheng, J., Williams, A. J., et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116(4), 499-509 (2004).

Kapranov, P., Cawley, S. E., Drenkow, J., Bekiranov, S., Strausberg, R. L., Fodor, S. P., and Gingeras, T. R. Large-scale transcriptional activity in chromosomes 21 and 22. Science 296(5569), 916-919 (2002).