Affy EC Sites Track Settings
 
Affymetrix ENCODE Extension Transcription Sites   (Affy EC)

This track is part of a parent called 'Affy EC'. To show other tracks of this parent, go to the Affy EC configuration page.

Display mode:       Reset to defaults

All subtracks:
List subtracks: only selected/visible    all    ()  
dense
 EC1 Sites BrainC  Affy Ext Trans Sites (1-base window) (Brain Cerebellum)   schema 
dense
 EC51 Sites BrainC  Affy Ext Trans Sites (51-base window) (Brain Cerebellum)   schema 
dense
 EC1 Sites BrainF  Affy Ext Trans Sites (1-base window) (Brain Frontal Lobe)   schema 
dense
 EC51 Site BrainF  Affy Ext Trans Sites (51-base window) (Brain Frontal Lobe)   schema 
dense
 EC1 Sites Hippoc  Affy Ext Trans Sites (1-base window) (Brain Hippocampus)   schema 
dense
 EC51 Site Hippoc  Affy Ext Trans Sites (51-base window) (Brain Hippocampus)   schema 
dense
 EC1 Sites BrainH  Affy Ext Trans Sites (1-base window) (Brain Hypothalamus)   schema 
dense
 EC51 Sites BrainH  Affy Ext Trans Sites (51-base window) (Brain Hypothalamus)   schema 
dense
 EC1 Sites FetalK  Affy Ext Trans Sites (1-base window) (Fetal Kidney)   schema 
dense
 EC51 Site FetalK  Affy Ext Trans Sites (51-base window) (Fetal Kidney)   schema 
dense
 EC1 Sites Spleen  Affy Ext Trans Sites (1-base window) (Fetal Spleen)   schema 
dense
 EC51 Site Spleen  Affy Ext Trans Sites (51-base window) (Fetal Spleen)   schema 
dense
 EC1 Sites Placen  Affy Ext Trans Sites (1-base window) (Placenta)   schema 
dense
 EC51 Site Placen  Affy Ext Trans Sites (51-base window) (Placenta)   schema 
dense
 EC1 Sites Testis  Affy Ext Trans Sites (1-base window) (Testis)   schema 
dense
 EC51 Site Testis  Affy Ext Trans Sites (51-base window) (Testis)   schema 
dense
 EC1 Sites FetalT  Affy Ext Trans Sites (1-base window) (Fetal Testis)   schema 
dense
 EC51 Site FetalT  Affy Ext Trans Sites (51-base window) (Fetal Testis)   schema 
dense
 EC1 Sites Prost  Affy Ext Trans Sites (1-base window) (Prostate)   schema 
dense
 EC51 Site Prost  Affy Ext Trans Sites (51-base window) (Prostate)   schema 
dense
 EC1 Sites Ovary  Affy Ext Trans Sites (1-base window) (Ovary)   schema 
dense
 EC51 Site Ovary  Affy Ext Trans Sites (51-base window) (Ovary)   schema 
dense
 EC1 Sites HeLa  Affy Ext Trans Sites (1-base window) (HeLa C1S3)   schema 
dense
 EC51 Site HeLa  Affy Ext Trans Sites (51-base window) (HeLa C1S3)   schema 
dense
 EC1 Sites GM0699  Affy Ext Trans Sites (1-base window) (GM06990)   schema 
dense
 EC51 Site GM0699  Affy Ext Trans Sites (51-base window) (GM06990)   schema 
dense
 EC1 Sites HepG2  Affy Ext Trans Sites (1-base window) (HepG2)   schema 
dense
 EC51 Site HepG2  Affy Ext Trans Sites (51-base window) (HepG2)   schema 
dense
 EC1 Sites K562  Affy Ext Trans Sites (1-base window) (K562)   schema 
dense
 EC51 Site K562  Affy Ext Trans Sites (51-base window) (K562)   schema 
dense
 EC1 Sites TertBJ  Affy Ext Trans Sites (1-base window) (Tert-BJ)   schema 
dense
 EC51 Site TertBJ  Affy Ext Trans Sites (51-base window) (Tert-BJ)   schema 
    
Data coordinates converted via liftOver from: May 2004 (NCBI35/hg17)

Description

This track shows the location of sites showing transcription (transfrags) for chromosomes 21 and 22 for 5 cell lines and 11 tissues. The 5 cell lines used were: GM06990, HepG2, K562, HeLaS3 and Tert-BJ; the 11 tissues used were: cerebellum, brain frontal lobe, hippocampus, hypothalamus, fetal spleen, fetal kidney, fetal thymus, ovary, placenta, prostate and testis. Purified cytosolic polyA+ RNA from GM06990, HepG2 and Tert-BJ cell lines, as well as purified polyA+ RNA from whole-cell extracts of the remaining cell lines and tissues, were hybridized to Affymetrix Chromosome 21_22_v2 oligonucleotide tiling arrays, which have 25-mer probes spaced on average every 17 bp (center-center of each 25mer) in the non-repetitive regions of human chromosomes 21 and 22. Clustered sites are shown in separate subtracks for each cell and tissue types.

Data for all biological replicates can be downloaded from Affymetrix in wig, BED, and cel formats.

Display Conventions and Configuration

The subtracks within this composite annotation track may be configured in a variety of ways to highlight different aspects of the displayed data. The graphical configuration options for the subtracks are shown at the top of the track description page, followed by a list of subtracks. To show only selected subtracks, uncheck the boxes next to the tracks that you wish to hide.

Methods

The data from replicate arrays were quantile-normalized (Bolstad et al., 2003) and all arrays were scaled to a median array intensity of 330. Using two different approaches: i) no sliding window ii) sliding 51-bp window centered on each probe, an estimate of RNA abundance (signal) was computed by calculating the median of all pairwise average PM-MM values, where PM is a perfect match and MM is a mismatch. Both Kapranov et al. (2002) and Cawley et al. (2004) are good references for the experimental methods. The latter also describes the analytical methods.

Verification

Single biological replicates were generated and hybridized to duplicate arrays (two technical replicates). Transcribed regions (see the Affy RNA Signal track) were generated from the composite signal track by merging genomic positions to which probes are mapped. This merging was based on a 5% false positive rate cutoff in negative bacterial controls, a maximum gap (MaxGap) of 25 basepairs and minimum run (MinRun) of 25 basepairs.

Credits

These data were generated and analyzed by the collaboration of the following groups: the Tom Gingeras group at Affymetrix, Roderic Guigo group at Centre de Regulacio Genomica, Alexandre Reymond group at the University of Lausanne and Stylianos Antonarakis group at the University of Geneva.

References

Please see the Affymetrix Transcriptome site for a project overview and additional references to Affymetrix tiling array publications.

Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003 Jan 22;19(2):185-93.

Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D, Piccolboni A, Sementchenko V, Cheng J, Williams AJ et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell. 2004 Feb 20;116(4):499-509.

Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SP, Gingeras TR. Large-scale transcriptional activity in chromosomes 21 and 22. Science. 2002 May 3;296(5569):916-9.