SRP286180 Track Settings
 
Comprehensive methylome sequencing reveals prognostic epigenetic biomarkers for prostate cancer mortality [Adjacent Normal, Tumour]   (Human methylome studies)

This track is part of a parent called 'Human methylome studies'. To show other tracks of this parent, go to the Human methylome studies configuration page.

Maximum display mode:       Reset to defaults   

Select views (help):
CpG reads ▾       CpG methylation ▾       AMR       PMD       HMR      
Select subtracks by views and experiment:
 All views CpG reads  CpG methylation  AMR  PMD  HMR 
experiment
SRX9235358 
SRX9235359 
SRX9235360 
SRX9235361 
SRX9235362 
SRX9235363 
SRX9235364 
SRX9235365 
SRX9235366 
SRX9235367 
SRX9235368 
SRX9235369 
SRX9235370 
SRX9235371 
SRX9235372 
SRX9235373 
SRX9235374 
SRX9235375 
SRX9235376 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX9235358  HMR  Tumour / SRX9235358 (HMR)   schema 
hide
 SRX9235358  CpG methylation  Tumour / SRX9235358 (CpG methylation)   schema 
hide
 SRX9235359  CpG methylation  Tumour / SRX9235359 (CpG methylation)   schema 
hide
 SRX9235359  HMR  Tumour / SRX9235359 (HMR)   schema 
hide
 SRX9235360  CpG methylation  Tumour / SRX9235360 (CpG methylation)   schema 
hide
 SRX9235360  HMR  Tumour / SRX9235360 (HMR)   schema 
hide
 SRX9235361  CpG methylation  Tumour / SRX9235361 (CpG methylation)   schema 
hide
 SRX9235361  HMR  Tumour / SRX9235361 (HMR)   schema 
hide
 SRX9235362  CpG methylation  Tumour / SRX9235362 (CpG methylation)   schema 
hide
 SRX9235362  HMR  Tumour / SRX9235362 (HMR)   schema 
hide
 SRX9235363  CpG methylation  Tumour / SRX9235363 (CpG methylation)   schema 
hide
 SRX9235363  HMR  Tumour / SRX9235363 (HMR)   schema 
hide
 SRX9235364  CpG methylation  Tumour / SRX9235364 (CpG methylation)   schema 
hide
 SRX9235364  HMR  Tumour / SRX9235364 (HMR)   schema 
hide
 SRX9235365  CpG methylation  Tumour / SRX9235365 (CpG methylation)   schema 
hide
 SRX9235365  HMR  Tumour / SRX9235365 (HMR)   schema 
hide
 SRX9235366  CpG methylation  Tumour / SRX9235366 (CpG methylation)   schema 
hide
 SRX9235366  HMR  Tumour / SRX9235366 (HMR)   schema 
hide
 SRX9235367  CpG methylation  Tumour / SRX9235367 (CpG methylation)   schema 
hide
 SRX9235367  HMR  Tumour / SRX9235367 (HMR)   schema 
hide
 SRX9235368  CpG methylation  Tumour / SRX9235368 (CpG methylation)   schema 
hide
 SRX9235368  HMR  Tumour / SRX9235368 (HMR)   schema 
hide
 SRX9235369  CpG methylation  Tumour / SRX9235369 (CpG methylation)   schema 
hide
 SRX9235369  HMR  Tumour / SRX9235369 (HMR)   schema 
hide
 SRX9235370  CpG methylation  Tumour / SRX9235370 (CpG methylation)   schema 
hide
 SRX9235370  HMR  Tumour / SRX9235370 (HMR)   schema 
hide
 SRX9235371  CpG methylation  Tumour / SRX9235371 (CpG methylation)   schema 
hide
 SRX9235371  HMR  Tumour / SRX9235371 (HMR)   schema 
hide
 SRX9235372  CpG methylation  Tumour / SRX9235372 (CpG methylation)   schema 
hide
 SRX9235372  HMR  Tumour / SRX9235372 (HMR)   schema 
hide
 SRX9235373  CpG methylation  Adjacent Normal / SRX9235373 (CpG methylation)   schema 
hide
 SRX9235373  HMR  Adjacent Normal / SRX9235373 (HMR)   schema 
hide
 SRX9235374  HMR  Adjacent Normal / SRX9235374 (HMR)   schema 
hide
 SRX9235374  CpG methylation  Adjacent Normal / SRX9235374 (CpG methylation)   schema 
hide
 SRX9235375  CpG methylation  Adjacent Normal / SRX9235375 (CpG methylation)   schema 
hide
 SRX9235376  CpG methylation  Adjacent Normal / SRX9235376 (CpG methylation)   schema 
    

Study title: Comprehensive methylome sequencing reveals prognostic epigenetic biomarkers for prostate cancer mortality
SRA: SRP286180
GEO: GSE158927
Pubmed: 36178085

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX9235358 Tumour 0.700 10.2 30405 1102.6 16721 1385.0 47 80214.7 0.954 GSM4815811: 139C; Homo sapiens; Bisulfite-Seq
SRX9235359 Tumour 0.745 16.8 42703 1253.0 40708 2821.6 1190 397276.1 0.957 GSM4815812: 1601C; Homo sapiens; Bisulfite-Seq
SRX9235360 Tumour 0.712 10.3 31966 1122.0 15812 1315.7 72 61194.4 0.960 GSM4815813: 349C; Homo sapiens; Bisulfite-Seq
SRX9235361 Tumour 0.704 7.8 27346 1216.0 7653 1255.7 4 162126.2 0.939 GSM4815814: 379C; Homo sapiens; Bisulfite-Seq
SRX9235362 Tumour 0.728 10.3 37098 1849.6 22290 3247.2 961 664744.0 0.954 GSM4815815: 46C; Homo sapiens; Bisulfite-Seq
SRX9235363 Tumour 0.675 11.8 61441 2534.0 14637 2686.4 1289 630884.2 0.968 GSM4815816: 514C; Homo sapiens; Bisulfite-Seq
SRX9235364 Tumour 0.649 8.6 26661 1373.7 6645 1230.2 381 1333734.4 0.930 GSM4815817: 564C; Homo sapiens; Bisulfite-Seq
SRX9235365 Tumour 0.668 10.8 27542 1117.0 14380 1324.5 34 105100.1 0.964 GSM4815818: 120C; Homo sapiens; Bisulfite-Seq
SRX9235366 Tumour 0.725 11.3 29907 1024.6 17341 1341.1 70 50731.4 0.949 GSM4815819: 1579C; Homo sapiens; Bisulfite-Seq
SRX9235367 Tumour 0.642 10.9 35020 1208.9 25283 1651.9 133 51813.1 0.959 GSM4815820: 174C; Homo sapiens; Bisulfite-Seq
SRX9235368 Tumour 0.666 11.8 28746 1135.2 17356 1358.1 31 102820.7 0.967 GSM4815821: 202C; Homo sapiens; Bisulfite-Seq
SRX9235369 Tumour 0.731 8.1 26386 1214.5 13208 1462.4 518 1115947.8 0.948 GSM4815822: 34C; Homo sapiens; Bisulfite-Seq
SRX9235370 Tumour 0.606 11.2 28952 1230.1 14246 1371.9 41 128574.4 0.933 GSM4815823: 361C; Homo sapiens; Bisulfite-Seq
SRX9235371 Tumour 0.651 11.0 31018 1212.5 37744 2247.5 810 746778.7 0.956 GSM4815824: 506C; Homo sapiens; Bisulfite-Seq
SRX9235372 Tumour 0.763 10.9 38209 1060.9 18582 1375.1 114 41336.8 0.966 GSM4815825: 5237C; Homo sapiens; Bisulfite-Seq
SRX9235373 Adjacent Normal 0.573 9.6 25129 1350.7 4117 1226.4 24 1034346.9 0.927 GSM4815826: 448N; Homo sapiens; Bisulfite-Seq
SRX9235374 Adjacent Normal 0.722 15.5 39592 1154.4 32830 1521.3 455 24490.9 0.955 GSM4815827: 1601N; Homo sapiens; Bisulfite-Seq
SRX9235375 Adjacent Normal 0.624 7.4 22441 1349.1 2995 1163.3 11 631447.3 0.932 GSM4815828: 564N; Homo sapiens; Bisulfite-Seq
SRX9235376 Adjacent Normal 0.612 7.9 23875 1350.1 3833 1207.7 13 559592.4 0.931 GSM4815829: 508N; Homo sapiens; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.