SRP309314 Track Settings
 
Epigenomics of nasal mucosa in children with acute respiratory illness [Nasal Mucosa]   (Human methylome studies)

This track is part of a parent called 'Human methylome studies'. To show other tracks of this parent, go to the Human methylome studies configuration page.

Maximum display mode:       Reset to defaults   

Select views (help):
CpG reads ▾       CpG methylation ▾       AMR       PMD       HMR      
Select subtracks by views and experiment:
 All views CpG reads  CpG methylation  AMR  PMD  HMR 
experiment
SRX10239413 
SRX10239414 
SRX10239415 
SRX10239416 
SRX10239417 
SRX10239418 
SRX10239419 
SRX10239420 
SRX10239421 
SRX10239422 
SRX10239423 
SRX10239424 
SRX10239425 
SRX10239426 
SRX10239427 
SRX10239428 
SRX10239429 
SRX10239430 
SRX10239431 
SRX10239432 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX10239413  HMR  Nasal Mucosa / SRX10239413 (HMR)   schema 
hide
 SRX10239413  CpG methylation  Nasal Mucosa / SRX10239413 (CpG methylation)   schema 
hide
 SRX10239414  CpG methylation  Nasal Mucosa / SRX10239414 (CpG methylation)   schema 
hide
 SRX10239414  HMR  Nasal Mucosa / SRX10239414 (HMR)   schema 
hide
 SRX10239415  HMR  Nasal Mucosa / SRX10239415 (HMR)   schema 
hide
 SRX10239415  CpG methylation  Nasal Mucosa / SRX10239415 (CpG methylation)   schema 
hide
 SRX10239416  CpG methylation  Nasal Mucosa / SRX10239416 (CpG methylation)   schema 
hide
 SRX10239416  HMR  Nasal Mucosa / SRX10239416 (HMR)   schema 
hide
 SRX10239417  HMR  Nasal Mucosa / SRX10239417 (HMR)   schema 
hide
 SRX10239417  CpG methylation  Nasal Mucosa / SRX10239417 (CpG methylation)   schema 
hide
 SRX10239418  CpG methylation  Nasal Mucosa / SRX10239418 (CpG methylation)   schema 
hide
 SRX10239418  HMR  Nasal Mucosa / SRX10239418 (HMR)   schema 
hide
 SRX10239419  HMR  Nasal Mucosa / SRX10239419 (HMR)   schema 
hide
 SRX10239419  CpG methylation  Nasal Mucosa / SRX10239419 (CpG methylation)   schema 
hide
 SRX10239420  CpG methylation  Nasal Mucosa / SRX10239420 (CpG methylation)   schema 
hide
 SRX10239420  HMR  Nasal Mucosa / SRX10239420 (HMR)   schema 
hide
 SRX10239421  HMR  Nasal Mucosa / SRX10239421 (HMR)   schema 
hide
 SRX10239421  CpG methylation  Nasal Mucosa / SRX10239421 (CpG methylation)   schema 
hide
 SRX10239422  CpG methylation  Nasal Mucosa / SRX10239422 (CpG methylation)   schema 
hide
 SRX10239422  HMR  Nasal Mucosa / SRX10239422 (HMR)   schema 
hide
 SRX10239423  HMR  Nasal Mucosa / SRX10239423 (HMR)   schema 
hide
 SRX10239423  CpG methylation  Nasal Mucosa / SRX10239423 (CpG methylation)   schema 
hide
 SRX10239424  CpG methylation  Nasal Mucosa / SRX10239424 (CpG methylation)   schema 
hide
 SRX10239424  HMR  Nasal Mucosa / SRX10239424 (HMR)   schema 
hide
 SRX10239425  HMR  Nasal Mucosa / SRX10239425 (HMR)   schema 
hide
 SRX10239425  CpG methylation  Nasal Mucosa / SRX10239425 (CpG methylation)   schema 
hide
 SRX10239426  HMR  Nasal Mucosa / SRX10239426 (HMR)   schema 
hide
 SRX10239426  CpG methylation  Nasal Mucosa / SRX10239426 (CpG methylation)   schema 
hide
 SRX10239427  HMR  Nasal Mucosa / SRX10239427 (HMR)   schema 
hide
 SRX10239427  CpG methylation  Nasal Mucosa / SRX10239427 (CpG methylation)   schema 
hide
 SRX10239428  HMR  Nasal Mucosa / SRX10239428 (HMR)   schema 
hide
 SRX10239428  CpG methylation  Nasal Mucosa / SRX10239428 (CpG methylation)   schema 
hide
 SRX10239429  HMR  Nasal Mucosa / SRX10239429 (HMR)   schema 
hide
 SRX10239429  CpG methylation  Nasal Mucosa / SRX10239429 (CpG methylation)   schema 
hide
 SRX10239430  HMR  Nasal Mucosa / SRX10239430 (HMR)   schema 
hide
 SRX10239430  CpG methylation  Nasal Mucosa / SRX10239430 (CpG methylation)   schema 
hide
 SRX10239431  CpG methylation  Nasal Mucosa / SRX10239431 (CpG methylation)   schema 
hide
 SRX10239431  HMR  Nasal Mucosa / SRX10239431 (HMR)   schema 
hide
 SRX10239432  HMR  Nasal Mucosa / SRX10239432 (HMR)   schema 
hide
 SRX10239432  CpG methylation  Nasal Mucosa / SRX10239432 (CpG methylation)   schema 
    

Study title: Epigenomics of nasal mucosa in children with acute respiratory illness
SRA: SRP309314
GEO: GSE168254
Pubmed: 33758880

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX10239413 Nasal Mucosa 0.802 16.8 62083 1023.8 2071 892.7 3394 16183.7 0.983 GSM5135034: Children Adenovirus Pool [Adeno-Pool-DNA]; Homo sapiens; Bisulfite-Seq
SRX10239414 Nasal Mucosa 0.809 21.9 66813 1045.5 2545 990.1 3664 16420.7 0.982 GSM5135035: Children Coronavirus OC43 Pool Rep1 [Corona-Pool-DNA]; Homo sapiens; Bisulfite-Seq
SRX10239415 Nasal Mucosa 0.790 17.2 55949 1052.0 4740 902.4 3398 15183.3 0.983 GSM5135036: Children Enterovirus D68 Pool [EVD68-Pool-DNA]; Homo sapiens; Bisulfite-Seq
SRX10239416 Nasal Mucosa 0.781 18.3 59667 1145.4 7393 907.9 3384 16607.1 0.981 GSM5135037: Children FluB 0-6mo Pool [FB_0-6mo_Pool_WGBS]; Homo sapiens; Bisulfite-Seq
SRX10239417 Nasal Mucosa 0.799 20.0 65975 987.2 1777 899.3 3851 13413.3 0.979 GSM5135038: Children FluB 12-24mo Pool [FB_12-24mo_Pool_WGBS]; Homo sapiens; Bisulfite-Seq
SRX10239418 Nasal Mucosa 0.798 19.9 65024 993.5 1652 891.5 3962 13355.5 0.980 GSM5135039: Children FluB 2-5y Pool [FB_2-5y_Pool_WGBS]; Homo sapiens; Bisulfite-Seq
SRX10239419 Nasal Mucosa 0.800 19.1 64839 983.1 1964 889.2 3670 13459.4 0.980 GSM5135040: Children FluB 6-12mo Pool [FB_6-12mo_Pool_WGBS]; Homo sapiens; Bisulfite-Seq
SRX10239420 Nasal Mucosa 0.796 32.7 69334 989.6 3901 874.1 3930 14930.2 0.985 GSM5135041: Children FluA Pool Rep2 [FluA-2019-BS]; Homo sapiens; Bisulfite-Seq
SRX10239421 Nasal Mucosa 0.797 18.2 58319 1047.2 4964 876.5 3713 14670.3 0.983 GSM5135042: Children FluA Pool Rep1 [FluA-Pool-DNA]; Homo sapiens; Bisulfite-Seq
SRX10239422 Nasal Mucosa 0.783 32.9 65596 1151.4 11833 937.7 3457 16860.6 0.985 GSM5135043: Children FluB Pool Rep2 [FluB-2019-BS]; Homo sapiens; Bisulfite-Seq
SRX10239423 Nasal Mucosa 0.784 16.4 52571 1121.1 9011 944.1 3259 14351.9 0.983 GSM5135044: Children FluB Pool Rep1 [FluB-Pool-DNA]; Homo sapiens; Bisulfite-Seq
SRX10239424 Nasal Mucosa 0.804 16.2 65165 986.7 1223 879.0 3875 13914.8 0.979 GSM5135045: Children Human metapneumovirus Pool Rep1 [HMP-Pool-DNA]; Homo sapiens; Bisulfite-Seq
SRX10239425 Nasal Mucosa 0.805 31.7 80759 916.0 1495 1024.2 4435 13576.0 0.986 GSM5135046: Children Human metapneumovirus Pool Rep2 [hMPV-2019-BS]; Homo sapiens; Bisulfite-Seq
SRX10239426 Nasal Mucosa 0.798 27.0 78650 923.8 1128 895.5 4241 13955.4 0.984 GSM5135047: Children Negative Pool Rep1 [Negative-2018-BS]; Homo sapiens; Bisulfite-Seq
SRX10239427 Nasal Mucosa 0.803 27.2 79974 885.5 1054 872.1 4573 13770.4 0.984 GSM5135048: Children Negative Pool Rep2 [Negative-2019-BS]; Homo sapiens; Bisulfite-Seq
SRX10239428 Nasal Mucosa 0.800 16.3 71571 937.3 806 933.2 3845 13198.7 0.984 GSM5135049: Children Negative Pool Rep1a [Negative-Pool-DNA]; Homo sapiens; Bisulfite-Seq
SRX10239429 Nasal Mucosa 0.807 18.5 57867 1164.0 6537 964.4 3560 16254.4 0.972 GSM5135050: Children Human Parainfluenza Virus Type 3 Pool [PIV-3-Pool-DNA]; Homo sapiens; Bisulfite-Seq
SRX10239430 Nasal Mucosa 0.800 16.5 64827 980.7 1339 872.7 3812 14301.1 0.983 GSM5135051: Children Rhinovirus Pool Rep1 [REV-Pool-DNA]; Homo sapiens; Bisulfite-Seq
SRX10239431 Nasal Mucosa 0.802 37.5 73285 985.5 2671 850.4 4458 14456.5 0.985 GSM5135052: Children Rhinovirus Pool Rep2 [Rhino-2019-BS]; Homo sapiens; Bisulfite-Seq
SRX10239432 Nasal Mucosa 0.701 35.2 75179 933.0 2527 971.2 4790 12003.8 0.986 GSM5135053: Children Respiratory syncytial virus Pool [RSV-2019-BS]; Homo sapiens; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.