SRP398111 Track Settings
 
to be updated [Blood]   (Human methylome studies)

This track is part of a parent called 'Human methylome studies'. To show other tracks of this parent, go to the Human methylome studies configuration page.

Maximum display mode:       Reset to defaults   

Select views (help):
CpG reads ▾       CpG methylation ▾       AMR       PMD       HMR      
Select subtracks by views and experiment:
 All views CpG reads  CpG methylation  AMR  PMD  HMR 
experiment
SRX17630409 
SRX17630414 
SRX17630415 
SRX17630416 
SRX17630417 
SRX17630418 
SRX17630419 
SRX17630420 
SRX17630421 
SRX17630422 
SRX17630423 
SRX17630424 
SRX17630425 
SRX17630426 
SRX17630427 
SRX17630428 
SRX17630429 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX17630409  HMR  Blood / SRX17630409 (HMR)   schema 
hide
 SRX17630409  CpG methylation  Blood / SRX17630409 (CpG methylation)   schema 
hide
 SRX17630414  CpG methylation  Blood / SRX17630414 (CpG methylation)   schema 
hide
 SRX17630414  HMR  Blood / SRX17630414 (HMR)   schema 
hide
 SRX17630415  CpG methylation  Blood / SRX17630415 (CpG methylation)   schema 
hide
 SRX17630415  HMR  Blood / SRX17630415 (HMR)   schema 
hide
 SRX17630416  CpG methylation  Blood / SRX17630416 (CpG methylation)   schema 
hide
 SRX17630416  HMR  Blood / SRX17630416 (HMR)   schema 
hide
 SRX17630417  HMR  Blood / SRX17630417 (HMR)   schema 
hide
 SRX17630417  CpG methylation  Blood / SRX17630417 (CpG methylation)   schema 
hide
 SRX17630418  CpG methylation  Blood / SRX17630418 (CpG methylation)   schema 
hide
 SRX17630418  HMR  Blood / SRX17630418 (HMR)   schema 
hide
 SRX17630419  CpG methylation  Blood / SRX17630419 (CpG methylation)   schema 
hide
 SRX17630419  HMR  Blood / SRX17630419 (HMR)   schema 
hide
 SRX17630420  HMR  Blood / SRX17630420 (HMR)   schema 
hide
 SRX17630420  CpG methylation  Blood / SRX17630420 (CpG methylation)   schema 
hide
 SRX17630421  HMR  Blood / SRX17630421 (HMR)   schema 
hide
 SRX17630421  CpG methylation  Blood / SRX17630421 (CpG methylation)   schema 
hide
 SRX17630422  CpG methylation  Blood / SRX17630422 (CpG methylation)   schema 
hide
 SRX17630422  HMR  Blood / SRX17630422 (HMR)   schema 
hide
 SRX17630423  CpG methylation  Blood / SRX17630423 (CpG methylation)   schema 
hide
 SRX17630423  HMR  Blood / SRX17630423 (HMR)   schema 
hide
 SRX17630424  HMR  Blood / SRX17630424 (HMR)   schema 
hide
 SRX17630424  CpG methylation  Blood / SRX17630424 (CpG methylation)   schema 
hide
 SRX17630425  CpG methylation  Blood / SRX17630425 (CpG methylation)   schema 
hide
 SRX17630425  HMR  Blood / SRX17630425 (HMR)   schema 
hide
 SRX17630426  CpG methylation  Blood / SRX17630426 (CpG methylation)   schema 
hide
 SRX17630426  HMR  Blood / SRX17630426 (HMR)   schema 
hide
 SRX17630427  CpG methylation  Blood / SRX17630427 (CpG methylation)   schema 
hide
 SRX17630427  HMR  Blood / SRX17630427 (HMR)   schema 
hide
 SRX17630428  HMR  Blood / SRX17630428 (HMR)   schema 
hide
 SRX17630428  CpG methylation  Blood / SRX17630428 (CpG methylation)   schema 
hide
 SRX17630429  CpG methylation  Blood / SRX17630429 (CpG methylation)   schema 
hide
 SRX17630429  HMR  Blood / SRX17630429 (HMR)   schema 
    

Study title: to be updated
SRA: SRP398111
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX17630409 Blood 0.490 11.8 35981 1298.3 1395 935.6 284 65214.0 0.993 GSM6592209: blood, P85, NEC; Homo sapiens; Bisulfite-Seq
SRX17630414 Blood 0.512 11.5 38044 1181.3 2409 1017.0 356 59775.4 0.996 GSM6592214: blood, P24c, control; Homo sapiens; Bisulfite-Seq
SRX17630415 Blood 0.496 14.1 40764 1125.1 1921 930.6 582 34295.9 0.996 GSM6592215: blood, P39c, control; Homo sapiens; Bisulfite-Seq
SRX17630416 Blood 0.531 10.6 37031 1218.5 2378 1038.7 488 56015.4 0.996 GSM6592216: blood, P47c, control; Homo sapiens; Bisulfite-Seq
SRX17630417 Blood 0.523 10.4 37966 1216.2 2162 1056.2 424 55874.7 0.996 GSM6592217: blood, P48c, control; Homo sapiens; Bisulfite-Seq
SRX17630418 Blood 0.542 12.8 40529 1114.3 2249 963.0 676 35834.4 0.995 GSM6592218: blood, P49c, control; Homo sapiens; Bisulfite-Seq
SRX17630419 Blood 0.496 14.5 37285 1161.6 2716 1078.1 514 37323.3 0.996 GSM6592219: blood, P51c, control; Homo sapiens; Bisulfite-Seq
SRX17630420 Blood 0.477 14.2 37463 1196.5 2037 939.0 267 56273.7 0.996 GSM6592220: blood, P52c, control; Homo sapiens; Bisulfite-Seq
SRX17630421 Blood 0.516 14.3 42429 1100.7 1837 947.2 587 38524.5 0.996 GSM6592221: blood, P101, NEC; Homo sapiens; Bisulfite-Seq
SRX17630422 Blood 0.588 6.7 34830 1256.0 2101 1039.8 400 49457.0 0.995 GSM6592222: blood, P108, NEC; Homo sapiens; Bisulfite-Seq
SRX17630423 Blood 0.525 9.9 35474 1257.4 2134 1034.6 374 53716.0 0.996 GSM6592223: blood, P113, NEC; Homo sapiens; Bisulfite-Seq
SRX17630424 Blood 0.573 9.0 38212 1188.3 1903 1072.6 382 49545.2 0.996 GSM6592224: blood, P119, NEC; Homo sapiens; Bisulfite-Seq
SRX17630425 Blood 0.526 11.7 37928 1186.4 1990 966.2 487 41960.2 0.996 GSM6592225: blood, P121, NEC; Homo sapiens; Bisulfite-Seq
SRX17630426 Blood 0.491 16.2 40502 1108.9 2307 996.7 532 35485.1 0.996 GSM6592226: blood, P137, NEC; Homo sapiens; Bisulfite-Seq
SRX17630427 Blood 0.505 12.0 38463 1203.2 1762 930.3 482 49370.8 0.996 GSM6592227: blood, P139, NEC; Homo sapiens; Bisulfite-Seq
SRX17630428 Blood 0.514 16.0 42110 1079.7 2422 967.7 633 35327.1 0.996 GSM6592228: blood, P140, NEC; Homo sapiens; Bisulfite-Seq
SRX17630429 Blood 0.511 13.5 37909 1151.3 2254 964.9 430 37342.8 0.996 GSM6592229: blood, P143, NEC; Homo sapiens; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.