SRP408041 Track Settings
 
The catalytic activity of TET1 is required for human germ cell fate choice [Bisulfite-Seq] [hESC, hPGCLC]   (Human methylome studies)

This track is part of a parent called 'Human methylome studies'. To show other tracks of this parent, go to the Human methylome studies configuration page.

Maximum display mode:       Reset to defaults   

Select views (help):
CpG reads ▾       CpG methylation ▾       AMR       PMD       HMR      
Select subtracks by views and experiment:
 All views CpG reads  CpG methylation  AMR  PMD  HMR 
experiment
SRX18272255 
SRX18272256 
SRX18272257 
SRX18272258 
SRX18272259 
SRX18272260 
SRX18272261 
SRX18272262 
SRX18272263 
SRX18272264 
SRX18272265 
SRX18272266 
SRX18272267 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX18272255  CpG methylation  hESC / SRX18272255 (CpG methylation)   schema 
hide
 SRX18272255  HMR  hESC / SRX18272255 (HMR)   schema 
hide
 SRX18272256  CpG methylation  hESC / SRX18272256 (CpG methylation)   schema 
hide
 SRX18272256  HMR  hESC / SRX18272256 (HMR)   schema 
hide
 SRX18272257  HMR  hPGCLC / SRX18272257 (HMR)   schema 
hide
 SRX18272257  CpG methylation  hPGCLC / SRX18272257 (CpG methylation)   schema 
hide
 SRX18272258  CpG methylation  hPGCLC / SRX18272258 (CpG methylation)   schema 
hide
 SRX18272258  HMR  hPGCLC / SRX18272258 (HMR)   schema 
hide
 SRX18272259  CpG methylation  hESC / SRX18272259 (CpG methylation)   schema 
hide
 SRX18272259  HMR  hESC / SRX18272259 (HMR)   schema 
hide
 SRX18272260  CpG methylation  hESC / SRX18272260 (CpG methylation)   schema 
hide
 SRX18272260  HMR  hESC / SRX18272260 (HMR)   schema 
hide
 SRX18272261  CpG methylation  hESC / SRX18272261 (CpG methylation)   schema 
hide
 SRX18272261  HMR  hESC / SRX18272261 (HMR)   schema 
hide
 SRX18272262  CpG methylation  hPGCLC / SRX18272262 (CpG methylation)   schema 
hide
 SRX18272262  HMR  hPGCLC / SRX18272262 (HMR)   schema 
hide
 SRX18272263  CpG methylation  hPGCLC / SRX18272263 (CpG methylation)   schema 
hide
 SRX18272263  HMR  hPGCLC / SRX18272263 (HMR)   schema 
hide
 SRX18272264  CpG methylation  hPGCLC / SRX18272264 (CpG methylation)   schema 
hide
 SRX18272264  HMR  hPGCLC / SRX18272264 (HMR)   schema 
hide
 SRX18272265  HMR  hESC / SRX18272265 (HMR)   schema 
hide
 SRX18272265  CpG methylation  hESC / SRX18272265 (CpG methylation)   schema 
hide
 SRX18272266  CpG methylation  hESC / SRX18272266 (CpG methylation)   schema 
hide
 SRX18272266  HMR  hESC / SRX18272266 (HMR)   schema 
hide
 SRX18272267  CpG methylation  hESC / SRX18272267 (CpG methylation)   schema 
hide
 SRX18272267  HMR  hESC / SRX18272267 (HMR)   schema 
    

Study title: The catalytic activity of TET1 is required for human germ cell fate choice [Bisulfite-Seq]
SRA: SRP408041
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX18272255 hESC 0.735 19.2 36098 1101.3 1105 1333.3 3813 7726.0 0.955 GSM6731108: UCLA1_hESC_rep2_WGBS; Homo sapiens; Bisulfite-Seq
SRX18272256 hESC 0.733 13.2 31520 1200.7 1006 1316.1 1810 12854.5 0.953 GSM6731109: UCLA1_hESC_rep3_WGBS; Homo sapiens; Bisulfite-Seq
SRX18272257 hPGCLC 0.715 8.5 31745 1242.1 741 1289.8 1583 12285.9 0.963 GSM6731110: UCLA1_D4hPGCLC_rep2_WGBS; Homo sapiens; Bisulfite-Seq
SRX18272258 hPGCLC 0.690 14.5 36543 1132.0 975 1280.9 3020 8053.6 0.962 GSM6731111: UCLA1_D4hPGCLC_rep3_WGBS; Homo sapiens; Bisulfite-Seq
SRX18272259 hESC 0.749 23.2 41414 1022.8 511 1077.2 4350 8272.9 0.957 GSM6731112: UCLA2_hESC_rep1_WGBS; Homo sapiens; Bisulfite-Seq
SRX18272260 hESC 0.748 11.7 33608 1170.2 377 1080.0 1713 12128.6 0.947 GSM6731113: UCLA2_hESC_rep2_WGBS; Homo sapiens; Bisulfite-Seq
SRX18272261 hESC 0.747 17.0 37277 1087.2 444 1070.4 3832 7457.8 0.956 GSM6731114: UCLA2_hESC_rep3_WGBS; Homo sapiens; Bisulfite-Seq
SRX18272262 hPGCLC 0.691 20.2 39449 1064.6 614 1077.0 3554 6798.3 0.957 GSM6731115: UCLA2_D4hPGCLC_rep1_WGBS; Homo sapiens; Bisulfite-Seq
SRX18272263 hPGCLC 0.711 13.8 39579 1116.2 530 1082.3 1832 10826.6 0.963 GSM6731116: UCLA2_D4hPGCLC_rep2_WGBS; Homo sapiens; Bisulfite-Seq
SRX18272264 hPGCLC 0.706 13.7 38546 1129.0 524 1088.6 1985 10307.9 0.963 GSM6731117: UCLA2_D4hPGCLC_rep3_WGBS; Homo sapiens; Bisulfite-Seq
SRX18272265 hESC 0.743 19.3 36842 1004.5 779 1210.6 4227 14746.0 0.983 GSM6731118: UCLA1_hTET1_CDKO1102_hESC_WGBS; Homo sapiens; Bisulfite-Seq
SRX18272266 hESC 0.732 17.3 33195 1095.0 744 1330.0 3986 12471.3 0.982 GSM6731119: UCLA1_hTET1_CDKO1105_hESC_WGBS; Homo sapiens; Bisulfite-Seq
SRX18272267 hESC 0.755 19.3 33820 1045.8 750 1196.8 3335 10319.4 0.975 GSM6731120: UCLA1_hTET1_CDKO1312_hESC_WGBS; Homo sapiens; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.